A Comparative Study on the Laser Welding of Ti6Al4V Alloy Sheets in Flat and Horizontal Positions
نویسندگان
چکیده
Laser welding has been increasingly utilized to manufacture a variety of components thanks to its high quality and speed. For components with complex shapes, the welding position needs be continuously adjusted during laser welding, which makes it necessary to know the effects of the welding position on the quality of the laser welds. In this paper, the weld quality under two (flat and horizontal) welding positions were studied comparatively in the laser welding of Ti6Al4V titanium alloy, in terms of weld profiles, process porosity, and static tensile strengths. Results show that the flat welding position led to better weld profiles, less process porosity than that of the horizontal welding position, which resulted from the different actions of gravity on the molten weld metals and the different escape routes for pores under different welding positions. Although undercuts showed no association with the fracture positions and tensile strengths of the welds, too much porosity in horizontal laser welds led to significant decreases in the strengths and specific elongations of welds. Higher laser powers and travel speeds were recommended, for both flat and horizontal welding positions, to reduce weld porosity and improve mechanical properties.
منابع مشابه
Numerical simulation of laser beam welding of Ti6Al4V sheet
This paper was aimed to report the 3D finite element analysis simulation of laser welding process of Ti6Al4V 1.7 mm sheets in butt joint in order to predict the temperature distribution, hardness, and weld geometry. The butt-joint welds were made using CO2 laser with the maximum power of 2.2 kW in the continuous wave mode. A part of the experimental work was carried out to verify the weld geome...
متن کاملStudy of Gravity Effects on Titanium Laser Welding in the Vertical Position
To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evalua...
متن کاملCharacteristics of Resistance Spot Welded Ti6Al4V Titanium Alloy Sheets
Ti6Al4V titanium alloy is applied extensively in the aviation, aerospace, jet engine, and marine industries owing to its strength-to-weight ratio, excellent high-temperature properties and corrosion resistance. In order to extend the application range, investigations on welding characteristics of Ti6Al4V alloy using more welding methods are required. In the present study, Ti6Al4V alloy sheets w...
متن کاملStudies on Distortion of Dissimilar Thin Sheet Weld Joints Using Laser Beam Welding
To achieve reliable welds with minimum distortion for the fabrication of components in aerospace industry laser beam welding is attempted. Laser welding can provide a significant benefit for the welding of Titanium and Aluminium thin sheet alloys of its precision and rapid processing capability. For laser welding, pulse shape, energy, duration, repetition rate and peak power are the most import...
متن کاملCharacterization of Nd: Yag Laser Radiation Effects on Ti6Al4V Physico-Chemical Properties: An In Vivo Study
The effect of a Nd: YAG laser (1064 nm) has been studied on Ti6Al4V alloy in terms of optical and physical parameters for biomedical applications. The superior surface microhardness hardness (i.e. 377 VHN) is attributed to grain refinement associated with laser melting and rapid solidification. The electrochemical property, mainly pitting corrosion resistance, has been carried out in Hanks salt...
متن کامل